COIFv5: Concentric Oval Intensity Features Version 5

Daniel Puckowski February 2023

Abstract

In this paper, I present an update to the novel interest point descriptor COIF (Concentric Oval Intensity Features). The descriptor is straightforward to implement and feature matching is time efficient. COIF may be used to detect rotated images and may be used for image stitching in panorama applications. COIF demonstrates the feasibility of using luminance histograms for feature matching.

Figure 1. Shape of a COIF descriptor.

Figure 2. Typical matching result using COIF on real-world images with a minor translation with default settings. Many matches are detected with few incorrect matches.

1. Introduction

Feature matching-the process of finding matching or similar regions between two images of the same scene or object-is a common computer vision task. Feature matching may be a step for object recognition, a step for image stitching, and a step for pattern tracking. Keypoint detectors and descriptors such as SIFT, SURF, and ORB are commonly and successfully used for this task [4] [5] [6]. But the ORB binary descriptor, for example, is not easy to implement. To implement ORB, one needs to implement procedures to produce FAST features filtered by the Harris measure for a scale pyramid of an image, compute the orientation of a FAST feature by determining the intensity centroid, compute BRIEF descriptors for image patches from a set of binary intensity tests, perform a greedy search for a set of uncorrelated tests with means near 0.5 to generate rBRIEF descriptors, then implement Locality Sensitive Hashing (LSH) to perform a nearest neighbor search [4]. By contrast, COIF is meant to be easy to implement and is meant to be easy to optimize so that it is time efficient and so that feature matching may be performed in real time without the need for GPU acceleration on low-power devices.

2. Related work

Keypoints The Moravec corner detection algorithm, introduced by Hans P. Moravec in 1977, is one of the earliest corner detection algorithms [1]. The Moravec algorithm defines a corner as a point with low self-similarity.

Descriptors Traditionally, image retrieval is based on the representation of the image

content through features thought to be relevant for the image description. Luminance, color, edge strength, and textural features are commonly used. Vertan and Boujemaa use fuzzy color histograms and their corresponding fuzzy distances for the retrieval of color images within various databases [2]. Vertan and Boujemaa use fuzzy distances due to the imprecision of the pixel color values.

Tola, Lepetit, and Fua developed a local descriptor, DAISY, which depends on histograms of gradients like SIFT and GLOH but uses a Gaussian weighting and circularly symmetrical kernel [3]. Tola, Lepetit, and Fua compute 200-length descriptors for every pixel in an 800x600 image in less than 5 seconds. DAISY consists of a vector made of values from the convolved orientation maps located on concentric circles centered on the location, and where the amount of Gaussian smoothing is proportional to the radii of the circles [3].

Luo, Xue, and Tian proposed a novel method based on making use of both SIFT features and the local intensity histograms on the feature points in order to achieve more robust image matching [7]. Luo, Xue, and Tian demonstrate that many false matches can be rejected by the proposed method.

3. Keypoint extraction

The first step for COIF keypoint extraction is to resize a given image such that its longest side is 640 pixels while preserving aspect ratio. The second step for COIF keypoint extraction is to convert a given image to a grayscale image with intensity values which range from 0 to 255. The grayscale value for a given pixel is determined by adding the sum of (red intensity x 0.299) + (green intensity x 0.114) + (blue intensity x 0.587).

$$\sum_{C \in \{R,G,B\}} w_c \cdot C$$

Figure 3

$$w_R = 0.299, \ w_B = 0.587, \ w_G = 1 - (w_R + w_B)$$
 Figure 4

Optionally, the grayscale image may be flattened using a simple approach where luminance values are multiplied by a value d, where d is typically 0.5, and the smallest integer value that is greater than or equal to the result is assigned as the new luminance value.

for
$$x = 0$$
 to width
for $y = 0$ to height
 $image[x[y] = ceil(image[x[y] \times 0.5)$

Figure 5

When set up to perform matching between two images, *d* may be adjusted per image such that the two images will have approximately the same average luminance.

The next step of COIF keypoint extraction is to implement the Moravec corner detection algorithm. The intensity variation is calculated by taking the sum of squares of intensity difference of corresponding pixels between a window centered on a pixel and the shifted window.

 $S_W(\bigtriangleup x, \ \bigtriangleup y) = \sum_{x_i \in W} \sum_{y_i \in W} (f(x_i \,, \ y_i) \ - \ f(x_i \ - \ \bigtriangleup x, \ y_i \ - \ \bigtriangleup y))^2$

Figure 6

$$S_W(-1, -1), \ S_W(-1, 0), \dots S_W(1, 1)$$

Figure 7

The smallest intensity variation from each of the 4 windows is selected and then a threshold is applied. If the intensity variation is greater than the threshold a point of interest, either an edge or a corner, at pixel location (x, y) is considered detected. The fact that the Moravec algorithm is not rotation invariant does not matter at this stage. The Moravec algorithm is chosen for simplicity, but another interest point detector which is capable of identifying points of interest centered on a single pixel may be used, like the Harris corner detector.

The next step for COIF keypoint extraction is to create histograms of concentric ovals of pixel intensity for a given radius *r* around the Moravec algorithm identified pixel, typically with a radius of 30 pixels.

dx = x - circleX, dy = y - circleY $dist = dx \cdot dx + dy \cdot dy$

Figure 8 To support matching of features in rotated images, four sets of concentric ovals are computed around a Moravec pixel (x, y) where both x and y are shifted by plus or minus s, where s is typically 4 pixels.

The first histogram of a set consists of 256 bins containing occurrences of intensity values for all pixels within the radius *r* of 18 pixels for the Moravec algorithm identified pixel. The second histogram consists of 256 bins containing occurrences of intensity values for all pixels within *r*2 where *r*2 is the radius *r* squared divided by 3. The third histogram consists of 256 bins containing occurrences of intensity values for all pixels within *r*3 where *r*3 is the radius *r* squared divided by 7.

r = radius

if (dist $\leq r^2$) histogram[image[x[[y]]] + 1

if (dist $\leq r^2 \div 3$) innerHistogram[image[x[y]] + 1

if (dist $\leq r^2 \div 7$) centralHistogram[image[x][y] + 1

Figure 9

With the histograms tallied,

keypoints are considered extracted and COIF descriptors may be computed next.

4. Descriptor computation

To create the COIF descriptors from the set of concentric oval intensity histograms derived from all Moravec algorithm pixel locations which passed a given threshold, first create a histogram h of k bins and initialize all values to 0. The initial value of k is 1. The value of each bin index of h is the absolute value of the difference of the sum s, where s is the next four consecutive outermost intensity histogram indices, with the sum s2 where s2 is the same four consecutive inner intensity histogram indices. Note that the sums s and s2 are not reset to zero for each collection of four indices.

This process is repeated for the innermost intensity histogram, where a second histogram h2 of k bins is created and all values are initialized to 0. The value of each bin index of h2 is the absolute value of the difference of the sum s3, where s3 is the next four consecutive outermost intensity histogram indices, with the sum s4 where s4 is the same four consecutive innermost intensity histogram indices.

```
\begin{split} n &= 0; sum = 0; sumInner = 0; binIndex = 0; k = 1; \\ for i &= 0 to 255 \\ sum + histogram[i] \\ sumInner + innerHistogram[i] \\ n + 1 \\ if (n &= k) distances[binIndex] = |sum - sumInner|; n = 0; binIndex + 1 \\ \hline Figure 10 \\ n &= 0; sum = 0; sumInner = 0; binIndex = 0; k = 1; \\ for i &= 0 to 255 \\ sum + histogram[i] \\ sumInner + centralHistogram[i] \\ n + 1 \\ if (n &= k) distancesCentral[binIndex] = |sum - sumInner|; n = 0; binIndex + 1 \end{split}
```

Figure 11

Once each bin for both histogram h and h2 have been computed the COIF descriptor has been created.

In addition to histogram h and histogram h2, a couple of distinctiveness measures are also computed to assist with feature matching. The first measure, a distinctiveness measure, simply checks all values of the outermost histogram and increments a measure where the value is less than some value *n*, where *n* is typically 2. To finalize the distinctiveness score, the incremented measure is subtracted from 256 and the result is the distinctiveness score.

score = 0for i = 0 to 255 if (histogram[i] < n) score + 1

distinctiveness = 256 - score

Figure 12

The second measure, a longest sequence measure, finds the longest sequence of uninterrupted bins where the bin value is less than some value q, where q is typically 25.

 $\begin{aligned} sequence &= 0\\ count &= 0\\ for \ i &= 0 \ to \ 255\\ if \ (histogram[i] < q) \ count \ + \ 1\\ else \ if \ (sequence \ < \ count) \ sequence \ = \ count; \ count \ = \ 0\\ \hline Figure \ 13 \end{aligned}$

5. Matching of features

To begin matching, COIF descriptors are removed as possible matching candidates if its distinctiveness measure matches certain criteria. This step speeds up matching and improves accuracy in cases where there are textures in the source images. If the Moravec algorithm yielded less than 10,000 points, remove all descriptors with a distinctiveness score less than 90. If the Moravec algorithm yields more than 10,000 points, remove all descriptors with a distinctiveness score less than 105.

Optionally, to improve time efficiency, if there are more than 20,000

descriptors remaining after filtering for distinctiveness, remove a descriptor at random until there are no more than 20,000 descriptors.

COIF descriptors that contain a set of concentric ovals where the longest sequence q is greater than 70 are removed from consideration to improve accuracy and time efficiency.

If real-time feature matching is the goal, descriptors correlating to Moravec points where the Moravec minimum sum of squares may be removed until only the descriptors correlating to Moravec points with the 1,000 highest sum of squares remain.

To match our COIF features extracted from two images for applications such as image stitching, we need a bin threshold t and a percentage tolerance value p. Typically, t is 6 where 6 means less than 6 different bins and p is typically 0.02 or 2% tolerance of absolute difference when comparing individual bins for matches.

Each COIF descriptor should have 4 sets of concentric ovals. Pick two COIF descriptors to compare. For the first descriptor, we will always use concentric oval set indices 0 through 3 in order when comparing to another COIF descriptor. The index pointing to the set of concentric ovals taken from the first COIF descriptor is termed *fi* and the shift array index for the first COIF descriptor is always 0.

 $\{0, 1, 2, 3\}$

Figure 14

For the second descriptor, we will try to identify a match using the below procedure several times using an array of shifting indices. The index pointing to the set of concentric ovals taken from the second COIF descriptor is termed *si* and the shift array index for the second COIF descriptor will be iterated 0 through 3. If features being compared are expected not to rotate more than 45 degrees in any one direction, only shift array index 0 may be evaluated to improve time efficiency and shift array indices 1 through 3 may be ignored.

$$\left\{ \begin{array}{c} \left\{ \begin{array}{c} 0, \ 1, \ 2, \ 3 \end{array} \right\}, \\ \left\{ \begin{array}{c} 1, \ 2, \ 3, \ 0 \end{array} \right\}, \\ \left\{ \begin{array}{c} 2, \ 3, \ 0, \ 1 \end{array} \right\}, \\ \left\{ \begin{array}{c} 3, \ 0, \ 1, \ 2 \end{array} \right\}, \end{array} \right.$$

Figure 15

Given two sets of concentric ovals extracted from two images using indices fiand si, the corresponding number of bins from histograms h and h2 are compared for absolute distance value where a difference is detected if the absolute difference exceeds the value plus or minus the value times p.

```
\begin{split} c1 &= COIF \ feature \ 1 \\ c2 &= COIF \ feature \ 2 \\ binDistance &= 0 \\ p &= 0.02 \\ for \ i &= 0 \ to \ 63 \\ d1 &= c1. \ distances[i] \\ d2 &= c2. \ distances[i] \\ if(d2 &< (d1 \cdot (1.0 - p)) \ || \ d2 > (d1 \cdot (1.0 + 0)) \ binDistance + 1 \\ for \ i &= 0 \ to \ 63 \\ d1 &= c1. \ distancesCentral[i] \\ d2 &= c2. \ distancesCentral[i] \\ d2 &= c2. \ distancesCentral[i] \\ if(d2 &< (d1 \cdot (1.0 - p)) \ || \ d2 > (d1 \cdot (1.0 + p)) \ binDistance + 1 \end{split}
```

Figure 16

To improve the accuracy of matching, if the absolute difference of the value plus or minus the value times *p* exceeds some threshold *i*, where *i* is typically 40, then the bin distance is incremented as the match is considered poor.

Optionally, to increase the number of potential matches, if the absolute value of the difference of two bins is less than a threshold *m*, the bins may be considered identical, where *m* is typically 70.

If all bins from both histograms hand h2 have been compared to be within pdistance and the total number of different bins is less than the threshold t, the two sets of concentric ovals from the COIF features are considered to be a match. The comparison may be terminated early to improve time efficiency if the threshold t is met as the two COIF features will not be a good match.

The lowest bin distance for a set of concentric ovals taken from two COIF descriptors is used as the best match, and the index of the shift array is noted for use in the next step.

Once all COIF descriptors from the first image have been compared to all COIF descriptors from the second image, feature matches associated with the shift array index that are not the most frequent are removed from the list of feature matches as false positives.

If less than 5 matches are found for a given k, or 85% of the feature matches are within 10% distance of each other, the feature matching process is repeated with a new k value that is incremented by 1. Terminate feature matching if k would exceed 5.

5.1 Strategy for bounded homography

If enough feature matches are identified but some bounded homography method, such as RANSAC or some variation of RANSAC, does not yield a satisfactory result, then the total number of different bins less than the threshold *t* may be used to increase the accuracy of matches [8]. Remove feature matches that have the highest total number of different bins less than the threshold *t* and rerun the bounded homography method until it yields a satisfactory result.

Parameter Name	Symbol	Description
Radius	٢	The radius from interest point detector pixel to use as luminance values in the outermost COIF histogram. Typically 30, meaning 30 pixels.
Bin threshold	t	The threshold of the different number of COIF bins to indicate a match. Typically 40, meaning less than 40 different bins.
Optional minimum bin threshold	m	An optional minimum bin threshold where if the absolute value of the difference of two bins is less than <i>m</i> the bins are a match. Typically 70.
Image flattening value	d	The value to multiply image luminance values by to flatten the image. Typically 0.5.
Matching threshold	p	The percentage of tolerance to match COIF bin values. Typically 0.02, meaning there is a +/- 2% tolerance to signal bins are identical.
Bin merge count	k	The number of bins to merge for the given histogram, which starts at 1 and is

		incremented by 1 for each necessary iteration.
Concentric oval set pixel shift	S	The number of pixels to add or subtract from x or y which will serve as the center of all the ovals. The value of <i>s</i> is typically 4.
Long histogram sequence	q	The longest histogram sequence where all uninterrupted values are less than <i>q</i> is used to filter out poor matches, where <i>q</i> is typically 25.

Table 1

6. Results

Matching COIF features yields enough reliable matches to be used for image stitching given a range of affine transformations.

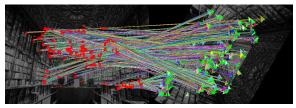


Figure 17

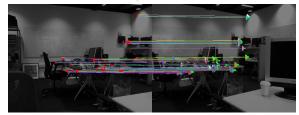


Figure 18

Figure 19 COIF is sensitive to blurs. Increasing the threshold t may yield more matches at

the expense of introducing false positives. Further work, such as further computations on a scale pyramid of a given image to introduce scale invariance and refinements of the descriptor computation to be less sensitive to blurs may be researched.

References

[1] Hans P. Moravec. Techniques Towards Automatic Visual Obstacle Avoidance. <u>https://frc.ri.cmu.edu/~hpm/project.archive/r</u> <u>obot.papers/1977/aip.txt</u>

[2] Constantin Vertan and Nozha Boujemaa. Using Fuzzy Histograms and Distances for Color Image Retrieval.

[3] Engin Tola, Vincent Lepetit, and Pascal Fua. Daisy: An Efficient Dense Descriptor Applied to Wide Baseline Stereo.

[4] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: an efficient alternative to SIFT or SURF.

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust Features.

[6] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.

[7] Ye Luo, Ping Xue, and Qi Tian. Image Histogram Constrained SIFT Matching.

[8] Martin A. Fischler, and Robert C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography.