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Abstract

In this paper, I present an update to the
novel quasi-rotation invariant interest point
descriptor COIF (Concentric Oval Intensity
Features). The descriptor is straightforward
to implement and feature matching can be
time efficient. COIF may be used to detect
rotated images and may be used for image
stitching in panorama applications. COIF
demonstrates the feasibility of using
luminance histograms for feature matching.

Figure 1. Shape of a COIF descriptor.

Figure 2. Typical matching result using COIF on
real-world images with default settings. Many

matches are detected with few incorrect matches.

1. Introduction

Feature matching—the process of finding
matching or similar regions between two
images of the same scene or object—is a
common computer vision task. Feature

matching may be a step for object
recognition, a step for image stitching, and a
step for pattern tracking. Keypoint detectors
and descriptors such as SIFT, SURF, and
ORB are commonly and successfully used
for this task [4] [5] [6]. But the ORB binary
descriptor, for example, is not easy to
implement. To implement ORB, one needs
to implement procedures to produce FAST
features filtered by the Harris measure for a
scale pyramid of an image, compute the
orientation of a FAST feature by determining
the intensity centroid, compute BRIEF
descriptors for image patches from a set of
binary intensity tests, perform a greedy
search for a set of uncorrelated tests with
means near 0.5 to generate rBRIEF
descriptors, then implement Locality
Sensitive Hashing (LSH) to perform a
nearest neighbor search [4]. By contrast,
COIF is meant to be easy to implement and
is meant to be easy to optimize so that it is
time efficient and so that feature matching
may be performed in real time without the
need for GPU acceleration on low-power
devices.

2. Related work

Keypoints
The Moravec corner detection algorithm,
introduced by Hans P. Moravec in 1977, is
one of the earliest corner detection
algorithms [1]. The Moravec algorithm
defines a corner as a point with low
self-similarity.

Descriptors
Traditionally, image retrieval is based on the
representation of the image content through
features thought to be relevant for the
image description. Luminance, color, edge
strength, and textural features are
commonly used. Vertan and Boujemaa use



fuzzy color histograms and their
corresponding fuzzy distances for the
retrieval of color images within various
databases [2]. Vertan and Boujemaa use
fuzzy distances due to the imprecision of
the pixel color values.

Tola, Lepetit, and Fua developed a
local descriptor, DAISY, which depends on
histograms of gradients like SIFT and
GLOH but uses a Gaussian weighting and
circularly symmetrical kernel [3]. Tola,
Lepetit, and Fua compute 200-length
descriptors for every pixel in an 800x600
image in less than 5 seconds. DAISY
consists of a vector made of values from the
convolved orientation maps located on
concentric circles centered on the location,
and where the amount of Gaussian
smoothing is proportional to the radii of the
circles [3].

Luo, Xue, and Tian proposed a novel
method based on making use of both SIFT
features and the local intensity histograms
on the feature points in order to achieve
more robust image matching [7]. Luo, Xue,
and Tian demonstrate that many false
matches can be rejected by the proposed
method.

3. Motivation and efficacy

COIFv6, like its predecessors, is
license free and may be used for any
purpose. COIF is primarily intended for use
in image stitching applications. COIF uses
the Moravec corner detection algorithm
because of the algorithm’s simplicity
combined with good enough time efficiency.
COIFv6 can be implemented in under 2,000
lines of Java code, with a reference
implementation consisting of 1,682 lines of
code using only standard libraries at time of
publish. The COIFv6 reference

implementation may be found at
https://github.com/puckowski/coif.

The best 25 matches (or fewer if the
respective algorithm yielded less than 25
matches total) from the COIFv6 and Scale
Invariant Feature Transform (SIFT)
algorithms were evaluated for 73 image
pairs. The results of the evaluation are
detailed below.

Description SIFT COIF

Instances
Equal

55 55

SIFT Better 11 -

COIF Better - 8

Accuracy
(%)

98.9589 98.5205

More
Accurate
(%)

+0.4384 -

Detailed Accuracy Distribution

COIFv6

Accuracy Range Count

100% 60

99-95% 6

94-90% 4

89-85% 0

84-80% 3

SIFT

Accuracy Range Count

100% 65

99-95% 4

https://github.com/puckowski/coif


94-90% 1

89-85% 2

84-80% 0

79-75% 1

In addition to feature matching
accuracy, COIFv6 was evaluated for
performance under varying light conditions,
perspective transformations, and scale
changes. The results of the second
evaluation are detailed below.

Effect Accuracy Range

Light Variation +/- 10%

Perspective
Transformation

25%

Scale Change +/- 50%

COIFv6 is robust enough for typical
variations in images of scenes taken with a
camera, one image shortly after another.
This makes COIFv6 suitable for image
stitching applications. As COIFv6 is
dependent on luminance histograms for
feature matching, it is most sensitive to
changes in light and performance degrades
as the average luminance of an image
decreases. One limitation to consider is the
size of the COIFv6 feature in terms of
pixels. A COIFv6 feature measures 68
pixels across. This means that no feature
matches will be found within 68 pixels of the
border around an image.

The COIFv6 algorithm is designed to
be a fire and forget algorithm, meaning one
set of parameter defaults and one algorithm
should provide suitable feature matches for
a broad variety of images. One deficiency of
the COIFv6 algorithm is that it assumes the

Moravec corner algorithm will find at least
2,500 corners with a threshold of 100. The
threshold of 100 may be too high for some
images and will result in less than the
recommended 2,500 corners per image.

3. Parameter defaults

● Feature to feature maximum
distinctiveness threshold is
distinctiveness plus 10

● Feature to feature minimum
distinctiveness threshold is
distinctiveness minus 10

● Longest sequence count increment
threshold is 25

● Concentric oval center offset is 4
pixels

● Distinctiveness threshold is 2 per bin
● Second innermost oval radius is

outer radius squared divided by 3
● Innermost oval radius is outer radius

divided by 7
● Moravec processor threshold 100
● Moravec processor local area corner

maximum is 2 percent of the image
area

● Moravec processor local area corner
maximum count is 40

● Grayscale image scalar is 0.5
● Original bin threshold for match is 38

plus 2 per iteration
● Original bin merge count is 1 plus 1

per iteration
● Original bin distance increment

negation threshold is 57 plus 3 per
iteration

● Concentric oval feature outermost
radius is 30 pixels

● Bin threshold floor scalar is 0.98
● Bin threshold ceiling scalar is 1.02
● Maximum bin difference threshold is

40



● Original feature distinctiveness
scalar is 0.35 minus 0.05 per
iteration

● Minimum feature count is 2,500
unless the original list's maximum is
less than 2,500

● Feature longest sequence removal
threshold is 70

● Original bin distance increment
negation threshold scalar is 0.85

● Minimum feature match count is 5
● Feature match closeness threshold

is 0.007
● Maximum bin threshold for match is

56

4. The algorithm

points1 = moravec corner detection on image1 with threshold 100, maximum 40 points for 2% of
image area, and discarding corners in patches with less than 6.0 shannon entropy

points2 = moravec corner detection on image2 with threshold 100, maximum 40 points for 2% of
image area, and discarding corners in patches with less than 6.0 shannon entropy

image1 = image1 * 0.5

image2 = image2 * 0.5

binThreshold = 38

binNegationThreshold = 57

featureMatchCount = 0

featureMatchCloseness = 0.00

LOOP WHILE (binThreshold < 56 AND (featureMatchCount < 5 OR featureMatchCloseness <
0.007)) OR first iteration

binMergeCount = 1

binThreshold = binThreshold + 2

binNegationThreshold = binNegationThreshold + 3



reducedBinNegationThreshold = binNegationThreshold * 0.85

LOOP (featureMatchCount < 5 OR featureMatchCloseness < 0.007) OR first iteration
featureList1 = empty list

LOOP points1
concentricOvalList = empty list

IF point x,y - 4 in points1 +/- radius 30 fits within image1 bounds
outerHistogram = histogram of pixels within radius
surroundedHistogram = histogram of pixels within radius / 3
centralHistogram = histogram of pixels within radius / 7
concentricOvals = [ outerHistogram, surroundedHistogram,

centralHistogram ]
concentricOvalList add concentricOvals

IF point x - 4,y in points1 +/- radius 30 fits within image1 bounds
outerHistogram = histogram of pixels within radius
surroundedHistogram = histogram of pixels within radius / 3
centralHistogram = histogram of pixels within radius / 7
concentricOvals = [ outerHistogram, surroundedHistogram,

centralHistogram ]
concentricOvalList add concentricOvals

IF point x + 4,y in points1 +/- radius 30 fits within image1 bounds
outerHistogram = histogram of pixels within radius
surroundedHistogram = histogram of pixels within radius / 3
centralHistogram = histogram of pixels within radius / 7
concentricOvals = [ outerHistogram, surroundedHistogram,

centralHistogram ]
concentricOvalList add concentricOvals

IF point x,y + 4 in points1 +/- radius 30 fits within image1 bounds
outerHistogram = histogram of pixels within radius
surroundedHistogram = histogram of pixels within radius / 3
centralHistogram = histogram of pixels within radius / 7
concentricOvals = [ outerHistogram, surroundedHistogram,

centralHistogram ]
concentricOvalList add concentricOvals

featureList1 add concentricOvalList

featureList2 = empty list



LOOP points2
concentricOvalList = empty list

IF point x,y - 4 in points1 +/- radius 30 fits within image2 bounds
outerHistogram = histogram of pixels within radius
surroundedHistogram = histogram of pixels within radius / 3
centralHistogram = histogram of pixels within radius / 7
concentricOvals = [ outerHistogram, surroundedHistogram,

centralHistogram ]
concentricOvalList add concentricOvals

IF point x - 4,y in points1 +/- radius 30 fits within image2 bounds
outerHistogram = histogram of pixels within radius
surroundedHistogram = histogram of pixels within radius / 3
centralHistogram = histogram of pixels within radius / 7
concentricOvals = [ outerHistogram, surroundedHistogram,

centralHistogram ]
concentricOvalList add concentricOvals

IF point x + 4,y in points1 +/- radius 30 fits within image2 bounds
outerHistogram = histogram of pixels within radius
surroundedHistogram = histogram of pixels within radius / 3
centralHistogram = histogram of pixels within radius / 7
concentricOvals = [ outerHistogram, surroundedHistogram,

centralHistogram ]
concentricOvalList add concentricOvals

IF point x,y + 4 in points1 +/- radius 30 fits within image2 bounds
outerHistogram = histogram of pixels within radius
surroundedHistogram = histogram of pixels within radius / 3
centralHistogram = histogram of pixels within radius / 7
concentricOvals = [ outerHistogram, surroundedHistogram,

centralHistogram ]
concentricOvalList add concentricOvals

featureList2 add concentricOvalList

LOOP featureList1
LOOP concentricOvalList concentricOvals

histogramLength = 256 / binMergeCount

binIndex = 0



angleIndex = 0

sum1 = 0

sum2 = 0

distances1 = histogram of histogramLength

LOOP histogramLength i
sum1 += outerHistogram i

sum2 += surroundedHistogram i

binIndex = binIndex + 1

IF binIndex = binMergeCount
distances1 at angleIndex = sum1 - sum2

angleIndex = angleIndex + 1

binIndex = 0

distances2 = histogram of histogramLength

sum1 = 0

sum2 = 0

binIndex = 0

angleIndex = 0

LOOP histogramLength i
sum1 += surroundedHistogram i

sum2 += centralHistogram i

binIndex = binIndex + 1

IF binIndex = binMergeCount
distances2 at angleIndex = sum1 - sum2

angleIndex = angleIndex + 1



binIndex = 0

concentricOvals distances1 = distances1

concentricOvals distances2 = distances2

score = 0

LOOP outerHistogram i
IF outerHistogram i < distinctiveness threshold 2

score = score + 1

concentricOvals distinctiveness = 256 - score

concentricOvals max compare distinctiveness =
concentricOvals distinctiveness + 10

concentricOvals min compare distinctiveness =
concentricOvals distinctiveness - 10

longestSequence = 0

count = 0

LOOP outerHistogram i
IF outerHistogram i < 25

count = count + 1

ELSE
IF longestSequence < count

longestSequence = count

count = 0

concentricOvals longestSequence = longestSequence

LOOP featureList2
LOOP concentricOvalList concentricOvals

histogramLength = 256 / binMergeCount

binIndex = 0

angleIndex = 0



sum1 = 0

sum2 = 0

distances1 = histogram of histogramLength

LOOP histogramLength i
sum1 += outerHistogram i

sum2 += surroundedHistogram i

binIndex = binIndex + 1

IF binIndex = binMergeCount
distances1 at angleIndex = sum1 - sum2

angleIndex = angleIndex + 1

binIndex = 0

distances2 = histogram of histogramLength

sum1 = 0

sum2 = 0

binIndex = 0

angleIndex = 0

LOOP histogramLength i
sum1 += surroundedHistogram i

sum2 += centralHistogram i

binIndex = binIndex + 1

IF binIndex = binMergeCount
distances2 at angleIndex = sum1 - sum2

angleIndex = angleIndex + 1

binIndex = 0



concentricOvals distances1 = distances1

concentricOvals distances2 = distances2

score = 0

LOOP outerHistogram i
IF outerHistogram i < distinctiveness threshold 2

score = score + 1

concentricOvals distinctiveness = 256 - score

concentricOvals max compare distinctiveness =
concentricOvals distinctiveness + 10

concentricOvals min compare distinctiveness =
concentricOvals distinctiveness - 10

longestSequence = 0

count = 0

LOOP outerHistogram i
IF outerHistogram i < 25

count = count + 1

ELSE
IF longestSequence < count

longestSequence = count

count = 0

concentricOvals longestSequence = longestSequence

distinctivenessModifier = 0.35

LOOP (featureList1 - count < 2500 AND featureList1 > 2500) OR first
iteration

sum = 0

distinctivenessModifier = distinctivenessModifier - 0.05

count = 0



LOOP featureList1
LOOP concentricOvalList concentricOvals

sum = sum + concentricOvals distinctiveness

count = count + 1

sum = sum / count

sumPiece = sum * distinctivenessModifier

highSum = sum + sumPiece

count = 0

LOOP featureList1
sum = 0

LOOP concentricOvalList concentricOvals
sum = sum + concentricOvals distinctiveness

sum = sum / 4

IF sum < highSum
count = count + 1

LOOP featureList1
sum = 0

LOOP concentricOvalList concentricOvals
sum = sum + concentricOvals distinctiveness

sum = sum / 4

IF sum < sumHigh
featureList1 remove concentricOvalList

distinctivenessModifier = 0.35

LOOP (featureList2 - count < 2500 AND featureList2 > 2500) OR first
iteration

sum = 0

distinctivenessModifier = distinctivenessModifier - 0.05



count = 0

LOOP featureList2
LOOP concentricOvalList concentricOvals

sum = sum + concentricOvals distinctiveness

count = count + 1

sum = sum / count

sumPiece = sum * distinctivenessModifier

highSum = sum + sumPiece

count = 0

LOOP featureList2
sum = 0

LOOP concentricOvalList concentricOvals
sum = sum + concentricOvals distinctiveness

sum = sum / 4

IF sum < highSum
count = count + 1

LOOP featureList2
sum = 0

LOOP concentricOvalList concentricOvals
sum = sum + concentricOvals distinctiveness

sum = sum / 4

IF sum < sumHigh
featureList2 remove concentricOvalList

LOOP featureList1 > 20000
Remove concentricOvalList at random from featureList1

LOOP featureList2 > 20000
Remove concentricOvalList at random from featureList2



LOOP featureList1
LOOP concentricOvalList concentricOvals

IF concentricOvals longestSequence > 70
featureList1 remove concentricOvals

LOOP featureList2
LOOP concentricOvalList concentricOvals

IF concentricOvals longestSequence > 70
featureList2 remove concentricOvals

featureMatchList = empty array

LOOP featureList1
LOOP featureList2

lowestDistance = 99999

compareIndex = 0

lowestRoughBinDistance = 99999

LOOP [ [ 0, 1, 2, 3 ], [ 1, 2, 3, 0 ], [ 2, 3, 0, 1 ], [ 3, 0, 1, 2 ], ]
compareIndex = compareIndex + 1

distanceFinal = 0

roughBinDistance = 0

IF feature1 distinctiveness < feature1 min
distinctiveness OR feature1 distinctiveness > feature1 max
distinctiveness

distanceFinal = 99999

secondDistances1 = featureList2
concentricOvalList2 distances1

LOOP featureList1 concentricOvalList1 distances1 i
val = distances1 i

val2 = secondDistances1 i

valLow = val * 0.98

valThresholdCheck = | val - valLow |



IF valThresholdCheck > 40
valLow = val - 40

valHigh = val * 1.02

valThresholdCheckHigh = | val - valHigh |

IF valThresholdCheckHigh > 40
valHigh = val + 40

IF val2 < valLow OR val2 > valHigh
binDistance = binDistance + 1

roughBinDistance =
roughBinDistance + 1

IF | val2 - val | <
reducedBinNegationThreshold

binDistance = binDistance - 1
ELSE

binDistance = binDistance +
1

IF binDistance >= binThreshold
BREAK LOOP

secondDistances2 = featureList2
concentricOvalList2 distances2

LOOP featureList2 concentricOvalList2 distances2 i
val = distances2 i

val2 = secondDistances2 i

valLow = val * 0.98

valThresholdCheck = | val - valLow |

IF valThresholdCheck > 40
valLow = val - 40

valHigh = val * 1.02

valThresholdCheckHigh = | val - valHigh |



IF valThresholdCheckHigh > 40
valHigh = val + 40

IF val2 < valLow OR val2 > valHigh
binDistance = binDistance + 1

roughBinDistance =
roughBinDistance + 1

IF | val2 - val | <
reducedBinNegationThreshold

binDistance = binDistance - 1
ELSE

binDistance = binDistance +
1

IF binDistance >= binThreshold
BREAK LOOP

distanceFinal = distanceFinal + binDistance

IF lowestDistance > distanceFinal
compareIndexMatch = compareIndex - 1

lowestDistance = distanceFinal

lowestRoughBinDistance = roughBinDistance

distanceFinal = lowestDistance

roughBinDistance = lowestRoughBinDistance

IF distanceFinal < binThreshold
featureMatchList add feature match with roughBinDistance

and compareIndexMatch

featureMatchCount = featureMatchList size

featureMatchCloseness = feature max x - min x * feature max y - min y / image1
width * height

binMergeCount = binMergeCount + 1



featureMatchCloseness = feature max x - min x * feature max y - min y / image1 width *
height

index0Sum = 0

index1Sum = 0

index2Sum = 0

index3Sum = 0

LOOP featureMatchList match
IF match compareIndexMatch = 0

index0Sum = index0Sum + 1

IF match compareIndexMatch = 1
index1Sum = index1Sum + 1

IF match compareIndexMatch = 2
index2Sum = index2Sum + 1

IF match compareIndexMatch = 3
index3Sum = index3Sum + 1

maxIndexSum = MAX index0Sum index1Sum index2Sum index3Sum

maxIndex = index of maxIndexSum

LOOP featureMatchList match
IF match compareIndexMatch IS NOT maxIndex

featureMatchList remove match

4.1 Selecting the best matches

An optional step is to select the best N matches. The pseudo-code for the algorithm to select
the nest N matches is detailed below.

featureMatches = featureMatches sorted by lowestRoughBinDistance ascending

featureMatchIndex featureMatches length - 1

LOOP featureMatches length > N AND featureMatchIndex >= 0

featureMatch = featureMatches at featureMatchIndex



x = featureMatch x

y = featureMatch y

LOOP featureMatches i

IF i = featureMatchIndex
CONTINUE

featureMatch2 = featureMatches at i

IF featureMatch2 x >= x - 15 AND featureMatch2 x <= x + 15

IF featureMatch2 y >= y - 15 && featureMatch2 <= y + 15

featureMatches remove i

IF featureMatchIndex > i

featureMatchIndex = featureMatchIndex - 1

i = i - 1

IF featureMatches size = N

featureMatchIndex = -1

BREAK

featureMatchIndex = featureMatchIndex - 1

LOOP featureMatches size > N

featureMatches remove featureMatches size - 1

4.2 Strategy for bounded
homography

If enough feature matches are identified but
some bounded homography method, such
as RANSAC or some variation of RANSAC,
does not yield a satisfactory result, then the

original bin threshold for match should be
reduced. If too few corners are detected,
reduce the moravec processor threshold.
Increasing the number of corners helps
increase the number of matches found. A
target of 2,500 corners per image balances
time efficiency with, typically, a good
number of feature matches.



5. Results

Matching COIF features yields enough
reliable matches to be used for image
stitching given a range of affine
transformations.

Figure 3

Figure 4

Figure 5

COIF is sensitive to blurs. Increasing
the threshold t may yield more matches at
the expense of introducing false positives.
Further work, such as further computations
on a scale pyramid of a given image to
introduce scale invariance and refinements
of the descriptor computation to be less
sensitive to blurs may be researched.
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